Novel Challenges for the Therapeutics of Depression: Pharmacological Modulation of Interaction between the Intracellular Signaling Pathways Mediated by Ca2+ and cAMP

Main Article Content

Afonso Caricati-Neto
Leandro Bueno Bergantin

Abstract

Depression is a psychiatric disease resulting mainly by dysfunction of serotoninergic and monoaminergic neurotransmission in central nervous system (CNS). Due to the multifaceted nature of depression and our limited understanding on its etiology, depression is difficult to be treated with currently available pharmaceuticals. Then, new therapeutic strategies for depression have been proposed. Since 1975, several clinical studies have reported that L-type Ca2+ channel blockers (CCBs), used in anti-hypertensive therapy, produce increase of plasma catecholamine levels and tachycardia, typical symptoms of sympathetic hyperactivity. Despite these adverse effects of CCBs have been initially attributed to adjust reflex of arterial pressure, during almost four decades these enigmatic phenomena remained unclear. In 2013, we discovered that this paradoxical sympathetic hyperactivity produced by CCBs results from the increase of catecholamines release from sympathetic nerves, and adrenal chromaffin cells, due to its modulatory action on the interaction between intracellular signaling pathways mediated by Ca2+ and cAMP (Ca2+/cAMP signalling interaction). Then, the pharmacological modulation of this interaction by combined use of L-type CCBs, and cAMP-enhancer compounds, could be a more efficient (and safer) therapeutic strategy to produce increase of serotoninergic and monoaminergic neurotransmission in the CNS due to enhance of serotonin and monoamines release, thus attenuating clinical symptoms of depression in humans.

Article Details

Caricati-Neto, A., & Bergantin, L. B. (2017). Novel Challenges for the Therapeutics of Depression: Pharmacological Modulation of Interaction between the Intracellular Signaling Pathways Mediated by Ca2+ and cAMP. Journal of Addiction Therapy and Research, 1(1), 001–006. https://doi.org/10.29328/journal.jatr.1001001
Mini Reviews

Copyright (c) 2017 Caricati-Neto A, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Caricati-Neto A, García AG, Bergantin LB. Pharmacological implications of the Ca2+/cAMP signalling interaction: from risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol Res Perspect. 2015; 3: e00181. Ref.: https://goo.gl/BBr2kt

Pytka K, Podkowa K, Rapacz A, Podkowa A, Żmudzka E, et al. The role of serotonergic, adrenergic and dopaminergic receptors in antidepressant-like effect. Pharmacol Rep. 2016; 68: 263-274. Ref.: https://goo.gl/MP8VUK

Bergantin LB, Souza CF, Ferreira RM, Smaili SS, Jurkiewicz NH, et al. Novel model for “calcium paradox” in sympathetic transmission of smooth muscles: role of cyclic AMP pathway. Cell Calcium. 2013; 54: 202-212. Ref.: https://goo.gl/NeN9ha

Bergantin LB, Jurkiewicz A, García AG, Caricati-Neto A. A Calcium Paradox in the Context of Neurotransmission. J Pharm Pharmacol. 2015; 3: 253-261. Ref.: https://goo.gl/hl07Cc

Bergantin LB, Caricati-Neto A. Challenges for the pharmacological treatment of neurological and psychiatric disorders: Implications of the Ca2+/cAMP intracellular signalling interaction. Eur J Pharmacol. 2016; 788, 255-260. Ref.: https://goo.gl/ItZfbz

Bergantin LB, Caricati-Neto A. Insight from “Calcium Paradox” due to Ca2+/cAMP Interaction: Novel Pharmacological Strategies for the Treatment of Depression. Int Arch Clin Pharmacol. 2016; 2: 2-7. Ref.: https://goo.gl/QPbmtY

Bergantin LB, Caricati-Neto A. Novel Insights for Therapy of Parkinson’s disease: Pharmacological Modulati on of the Ca2+/cAMP Signalling Interaction. Austin Neurol & Neurosci. 2016; 1: 1-4. Ref.: https://goo.gl/XkpzIH

Bergantin LB, Caricati-Neto A. Recent advances in pharmacotherapy of neurological and psychiatric disorders promoted by discovery of the role of Ca2+/cAMP signaling interaction in the neurotransmission and neuroprotection. Adv Pharmac J. 2016; 1: 66-70. Ref.: https://goo.gl/9ypgJo

Kaster MP, Moretti M, Cunha MP, Rodrigues AL (2016). Novel approaches for the management of depressive disorders. Eur J Pharmacol. 2016; 771: 236-40. Ref.: https://goo.gl/Z5fvbG

Köhler S, Cierpinsky K, Kronenberg G, Adli M . The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants. J Psychopharmacol. 2016; 30: 13-22. Ref.: https://goo.gl/nmmzva

Douglas WW, Rubin RP. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol. 1961; 159: 40-57. Ref.: https://goo.gl/9uWF59

Baker PF, Knight DE. Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes. Nature; 1978; 276: 620-622. Ref.: https://goo.gl/ifjTU3

Chern YJ, Kim KT, Slakey LL, Westhead EW. Adenosine receptors activate adenylate cyclase and enhance secretion from bovine adrenal chromaffin cells in the presence of forskolin. J Neurochem. 1988; 50: 1484-1493. Ref.: https://goo.gl/Z25XIH

Cooper DM, Mons N, Karpen JW. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 1995; 374: 421-424. Ref.: https://goo.gl/w9JkIm

Yule DI, Betzenhauser MJ, Joseph SK. Linking structure to function: recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. Cell Calcium. 2010; 47: 469-479. Ref.: https://goo.gl/qZbaac

Ahuja M, Jha A, Maléth J, Park S, Muallem S. cAMP and Ca²⁺ signaling in secretory epithelia: crosstalk and synergism. Cell Calcium. 2014; 55: 385-93. Ref.: https://goo.gl/v5sEi7

Grossman E, Messerli FH. Effect of calcium antagonists on sympathetic activity. Eur Heart J. 1998; 19: 27-31. Ref.: https://goo.gl/3VaR2B

Kreye VA, Luth JB. Proceedings: verapamil-induced phasic contractions of the isolated rat vas deferens. Naunyn Schmiedebergs Arch Pharmacol. 1975; 287: R43. Ref.: https://goo.gl/34bQaA

French AM, Scott NC. A comparison of the effects of nifedipine and verapamil on rat vas deferens. Br J Pharmacol. 1981; 73: 321-323. Ref.: https://goo.gl/gfli14

Moritoki H, Iwamoto T, Kanaya J, Maeshiba Y, Ishida Y, et al. Verapamil enhances the non-adrenergic twitch response of rat vas deferens. Eur J Pharmacol. 1987; 140: 75-83. Ref.: https://goo.gl/0yeqf1

Prakhie IV, Oxenkrug GF. The effect of nifedipine, Ca(2+) antagonist, on activity of MAO inhibitors, N-acetylserotonin and melatonin in the mouse tail suspension test. Int J Neuropsychopharmacol. 1998; 1: 35-40. Ref.: https://goo.gl/qDZmkH

Ogihara T, Nakagawa M, Ishikawa H, Mikami H, Takeda K, et al. Effect of manidipine, a novel calcium channel blocker, on quality of life in hypertensive patients. Blood Press Suppl. 1992; 3: 135-139. Ref.: https://goo.gl/OCWfvh

Veng LM, Mesches MH, Browning MD. Age-related working memory impairment is correlated with increases in the L-type calcium channel protein α1D (Cav1.3) in area CA1 of the hippocampus and both are ameliorated by chronic nimodipine treatment. Brain Res Mol Brain Res. 2003; 110: 193-202. Ref.: https://goo.gl/J1Igy5

Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature. 2007; 447: 1081-1086. Ref.: https://goo.gl/d2EjVz

Tsukuda K, Mogi M, Li JM, Iwanami J, Min LJ, et al. Diabetes-associated cognitive impairment is improved by a calcium channel blocker, nifedipine. Hypertension. 2008; 51: 528-533. Ref.: https://goo.gl/zgud8g

Sommer N, Loschmann PA, Northoff GH, Weller M, Steinbrecher A, et al. The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nat Med. 1995; 1: 244-248. Ref.: https://goo.gl/eXv7C8

Li YF, Cheng YF, Huang Y, Conti M, et al. Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling. J Neurosci. 2011; 31: 172-183. Ref.: https://goo.gl/fCsYtf

Xiao L, O'Callaghan JP, O'Donnell JM. Effects of repeated treatment with phosphodiesterase-4 inhibitors on cAMP signaling, hippocampal cell proliferation, and behavior in the forced-swim test. J Pharmacol Exp Ther. 2011; 338: 641-647. Ref.: https://goo.gl/myAhrx

De Vry J, Fritze J, Post R. The management of coexisting depression in patients with dementia: potential of calcium channel antagonists. Clinical Neuropharmacology. 1997; 20: 22-35. Ref.: https://goo.gl/OIvzJr

Vetulani J. The action of antidepressant drugs administered during calcium channel blockade. Pol J Pharmacol. 1993; 45: 179-84. Ref.: https://goo.gl/IfGE3E

Taragano FE, Bagnatti P, Allegri RF. A double-blind, randomized clinical trial to assess the augmentation with nimodipine of antidepressant therapy in the treatment of "vascular depression". Int Psychogeriatr. 2005; 17: 487-498. Ref.: https://goo.gl/19kry3